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Abstract-This paper is concerned with the development of a general solution for the elliptical
inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric field,
Explicit forms of the electroelastic fields are given in both the inhomogeneity and the matrix by
means of the complex variable method. Furthermore, the change of the electric enthalpy due to the
presence of an inhomogeneity is obtained. Numerical examples are provided to show the effect of
the material mismatch, the aspect ratio of the inhomogeneity and the loading condition upon the
change of the electric enthalpy and the electroelastic field concentration due to the presence of the
inhomogeneity, ~ 1997 Elsevier Science Ltd,

1. INTRODUCTION

In view of their intrinsic electro-mechanical coupling characteristics and the potential for
use in applications involving smart and adaptive material systems, piezoelectric ceramics
are receiving increased attention from the scientific community, Electroelastic field con­
centrations at defects or inhomogeneities such as cracks, voids or particles in a piezoelectric
composite material can contribute to critical crack growth and subsequent mechanical
failure or dielectric breakdown. Therefore, it is of vital importance to study the electroelastic
fields as a result of the presence of defects or inhomogeneities in these quasi-brittle solids.

Numerous attempts have been made to analyze a crack or a dislocation in piezoelectric
materials, see for example the works of Barnett and Lothe (1975), McMeeking (1989), Pak
(1990), Sosa and Pak (1990), Suo et al. (1992), Yang and Suo (1994), among others.
Attempts have also been made to treat the inhomogeneity problem in this class of materials.
Typical examples include the work ofDeeg (1980) and Dunn and Taya (1993) who extended
the application of the equivalent inclusion method of Eshelby (1957) to piezoelectric
materials. More recently, Pak (1992) studied the antiplane problem of a piezoelectric
circular inclusion, while Dunn (1994a) obtained the electroelastic field around an elliptical
void or a flaw in a piezoelectric solid. Furthermore, Dunn (1994b) obtained the electroelastic
Green's functions for transversely isotropic piezoelectric media. Liang et al. (1995) obtained
the coupled electroelastic field inside the inhomogeneity and on the interface. In addition,
Schulgasser (1992) and Chen (1993) established exact relations between the effective proper­
ties of piezoelectric composites. However, only a limited number of attempts have been
made to explicitly determine the electroelastic field in the matrix, which is the subject of the
current study.

In the present paper, we provide a general solution for the elliptical inhomogeneity
problem in piezoelectric materials under antiplane shear and inplane electric field. Firstly,
explicit forms of the electroelastic fields are given in both the inhomogeneity and the matrix
by means of the complex variable method. Furthermore, the change of the electric enthalpy
due to the presence of an inhomogeneity is obtained. Numerical examples are provided to
examine the effect of the material mismatch, the aspect ratio of the inhomogeneity and the
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Fig. 1. A schematic of the elliptical piezoelectric inhomogeneity problem under consideration.

loading condition upon the change of the electric enthalpy and the electroelastic field
concentration due to the presence of the inhomogeneity.

2. PROBLEM FORMULATIO"l

Consider an elliptical piezoelectric inhomogeneity embedded in an unbounded pie­
zoelectric matrix. The elliptical inhomogeneity, whose major and minor diameters are
denoted by 2a and 2b (focal length c = (a2

- b2
) 12) is oriented with its major and minor

axes along the x and y axes, respectively. The inhomogeneity and the matrix have different
elastic and electric properties and are assumed to be transversely isotropic with respect to
the longitudinal direction. The matrix is subjected to a remote inplane (x-y plane) electric
fields as well as out of plane shear, as shown in Fig. I. The inhomogeneity is assumed to be
perfectly bonded with the matrix at the interface L. The regions occupied by the matrix
and the inhomogeneity will be referred to as regions I and 2, respectively. In addition,
the quantities associated with the matrix and the inhomogeneity will be denoted by the
corresponding superscripts or subscripts.

For this problem, the out-of-plane displacement wand the electric potential ¢ are only
functions of the variables x and y, such that w = w(x, y) and ¢ = ¢(x, y).

For linear piezoelectric materials, the electric enthalpy density can be expressed as
(Pak, 1990)

(1)

where Lx and Yor are the shear strains, E, and E v are the electric fields, GL is the longitudinal
shear modulus, el5 denotes the piezoelectric modulus and k ll represents the dielectric
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modulus. The first term of eqn (I) is the energy stored in the deformation, the second term
is the energy stored in the electric fields and the last terms is the interaction energy.

The equilibrium equations for the stresses and the electric displacements are

O(Jzx va;::v
--+~~~' =0
ex oy

eD. aD__,+_v=o
ex oy

where (Jox and (JZ\ are the shear stresses, while D, and D, are the electric displacements.
The constitutive relations can be written as

(2)

(3)

The shear strains lox and (OV and the electric fields E\ and E, are related to the
displacement wand the electric potential ¢ by the following form:

aw
Yox =~.

ex

ow
.~ =-
/01' oy

a¢
E, = - -.:;­

ox

8¢
E, = - -.:;-.

oy
(4)

Substituting (3) and (4) into (2), we obtain the governing equations:

(5)

where '12 is the Laplacian operator.
Equation (5) indicates that wand ¢ are harmonic functions which can be taken as the

real part of some analytic functions of the complex variable z = x + iy, such that

1 -
w = -2('£I (z) + 'P(z))

GL

1 -
¢ = 2k

I1
(<1>(Z)+<1>(z)) (6)

where '£I and <1> represent the analytic functions and the overbar denotes the complex
conjugate. Hence, the stresses and the electric displacements can be expressed as

D,-iD, = ~5 'P'(z)-<1>'(z)
L

(7)

where the prime denotes the derivative with respect to the argument.
In order to define the continuity conditions at the inhomogeneity-matrix interface, we

introduce two quantities:
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T = f(O'zx dy- O'zy dx)

= ~ {['P(Z) - 'P(z)]~ + ~:: [<I>(z) - <I>(zm}

S = f(DydY-DvdX)

i{e l'- - }="2 G~ ['P(z)-'P(z)]~-[<I>(z)-<I>(z)]~ (8)

where T is the resultant force along any arc AB and S is the sum of the normal component
of the electric displacement along arc AB; [ ]~ denotes the change in the bracketed function
in going from A to point B along the arc.

The assumption of perfect bonding between regions I and 2 implies that

(9)

3. SOLUTION

Using the approach of conformal transformation (see, e.g., Gong and Meguid, 1992,
1993), it can be shown that the complex potentials, which satisfy the governing eqn (5) and
the boundary condition (9), have the following form:

(10)

(11 )

in the matrix, and

(12)

(13)

in the inhomogeneity, where

{H~} =(/(3)+J(3) {P~}+(L(3)+N(3) {Q~} (15)
H~ 0 - 0 P~ 0 - 0 Q~

with
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(18)

and Ibn), Jbn
), L~') and Nbn

) (n = 1,4) are given in the Appendix. In these equations, Pr!,
P~, Qr! and Q~ are real quantities, which will be determined from the far-field loading
conditions. Substituting (10)-(13) into (6) and (7), we obtain the electroelastic fields, as
follows:

Wj = ~ [(Pr! +Kr!) cos () - (P~+K~) sin ()
Gl

~ _ (()1 +()2) ;;:;-~ *. (()j +()2)]
- -,-M 0 cos --2- + -,-M o Sill --2-

_ e: s * * * * (els __)' " ( ()1+()2)Dyl---l(Po+Ko)+(Qo+Mo)+ -jKo-Mo ;::-::-Slll ()- 2
G L G L y"1/2

the matrix, and

(19)

(20)

(21 )

(22)

(23)

(24)



3406

b

S. A. Meguid and Z. Zhong

y

Region 1

c

a
Fig. 2. A schematic of the coordinate used.

r
w, = -(G~ cos e~Gt sin 0)

~ GI

r
1h = -k

2
(H~ cos e- Ht sin e)

11

J

G e els He
(Jzx2 = 0 + k 2 0

11

e l

- G* 15 H*
(jzyl - - 0 - k

2
0

11

e l

D - 15 G* H*1'2 - - -2 0 + 0
GL

x

(25)

(26)

(27)

(28)

(29)

(30)

in the inhomogeneity, where rand eare defined in Fig. 2. By applying the far-field loading
conditions (Pak, 1990), p~, Pt, Q~ and Qt are evaluated as follows:

Case 1 : the matrix is subjected to uniform strains j!~x and j!~v as well as uniform electric
fields E~ and E~ at infinity. In this case, we have

(31 )

(32)
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(33)

(34)

Case 2: the matrix is subjected to uniform stresses tT~, and tT~v as well as uniform
electric displacements D~ and D~ at infinity. In this case, we can determine

G I (k l ° I DO)p. _ L IltT",+e IS ,
o - G Ikl . I )?

t 11+(els-

G I (k I ° ,1 DO)p* _ _ L IltT"I'+(IS )
o - Ik l I?

G, II +(els)-

(35)

(36)

(37)

Qt=
k: I (el stT~v - G ~D~~)

G~k:1 +(els)2
(38)

Case 3 : the matrix is subjected to uniform strains }'~, and (~v as well as uniform electric
displacements D~ and D~ at infinity. In this case, we obtain

(39)

(40)

(41 )

(42)

Case 4: the matrix is subjected to uniform stresses tT~x and tT~1 as well as uniform
electric fields D~ and D~ at infinity. In this case, we can find

(43)

(44)

(45)

(46)

It can be observed from (27)-(30) that the stress and electric fields are constant within
the elliptical inhomogeneity which confirms the results of Wang (1992), Benveniste (1992)
and Dunn (1994). The main contribution of the present solution is in its ability to determine
the electroelastic field in the matrix explicitly. In fact, our solution reduces to the earlier
results of Pak for the special case of a circular inhomogeneity (Pak, 1992) and an elliptical
void (Pak, 1990).

Another interesting aspect of the present solution is the ability to determine the change
of the total electric enthalpy in the body due to the introduction of an inhomogeneity. The
total electric enthalpy H in a piezoelectric solid of unit thickness and cross-sectional area
D can be written as
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Fig. 3. Variations of the normalized electric enthalpy l'iH/H, vs the shear moduli ratio cue1.

where h is the electric enthalpy density given by (1). It can be shown that

H = Ho+!J.H

(47)

(48)

where Ho is the electric enthalpy in the absence of inhomogeneities and !J.H represents the
contribution due to the introduction of an inhomogeneity. Following the approach used
by Gong and Meguid (1992, 1993),!J.H can be evaluated as

nc
2

[ 1 1!J.H = - -(peKe_p*K*)- -(QeMe_Q*M*)2 G 1 0 0 0 0 k l 0 0 0 0
L II

(49)

4. NUMERICAL RESULTS AND DISCUSSION

In this section, we examine the effect of the material mismatch between the inhomo­
geneity and the matrix, the aspect ratio of the inhomogeneity and the loading condition
upon the change of the electric enthalpy and the electroelastic field concentrations due to
the presence of the inhomogeneity.

As an example, let us consider an elliptical inhomogeneity with an aspect ratio alb = 3,
embedded in an infinite matrix subjected to remote uniform stress and electric field, such
that: (1~v = 5 X 107 N/m2

, (1~x = 0, E~ = 106 Vim and E~ = 0.
Figure 3 shows the variation of the normalized electric enthalpy !J.HIHI vs shear moduli

ratio GUG l. The inhomogeneity and the matrix are assumed to have the same dielectric
and piezoelectric moduli: kl l = kTI = 1.51 X 10- 8 e/Ym, els = eTs = 10.0 C/m2 and
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Gl = 3.53 x 10 10 N/m2
. HI is an energy factor used to normalize the electric enthalpy and

is given by:

(50)

It is observed from Fig. 3 that an increase in GI!G1 results in a sharp decline in I1H
when the inhomogeneity is softer than the matrix (GI!Gl < 1). In the case where the
inhomogeneity is harder (GI!G1> 1), the decline is rather gradual approaching asymp­
totically the case of a rigid inhomogeneity. The figure also reveals that for GI!G1~ 5, the
elastic inhomogeneity can be treated as a rigid body.

Figure 4 shows the variation of the normalized electric enthalpy I1H/H1 vs the dielectric
moduli ratio kr ,jkl I. The inhomogeneity and the matrix are assumed to have the same
shear and piezoelectric moduli: Gl = 3.53 x 10 10 N/m2

, els = ers = 10.0 C/m2 and
klt = 1.51 x 10- 8 CjVm. It is observed that with the increase of kL/kl l , I1H increases
sharply when the dielectric modulus of the inhomogeneity is less than that of the matrix,
but increases gradually approaching asymptotically the case of a conducting inhomogeneity
when the dielectric modulus of the inhomogeneity is greater than that of the matrix. The
figure also reveals that for kL /kL ~ 5, the dielectric inhomogeneity can be treated as a
conductor.

Figure 5 shows the variation of the normalized electric enthalpy I1H/ HI vs the
piezoelectric moduli ratio ers/els. The inhomogeneity and the matrix are assumed to have the
same shear and dielectric moduli: Gl = Gi = 3.53 x 10 10 N/m2

, kl l = krl = 1.51 x 10- 8

CjVm and els = 10.0 Cjm2
• It can be observed from this figure that I1H/H] experiences a

sudden jump from -0.46 at ers/e:s = -3.0 to 0.08 at ers/el s = 3.0. This jump is caused
by the mismatch of the piezoelectric moduli between the inhomogeneity and the matrix.

Figure 6 shows the variation of the normalized electric enthalpy I1H/H I vs the aspect
ratio of the elliptical inhomogeneity for different ratios of shear moduli. The inhomogeneity
and the matrix have the following material constants: Gl = 3.53 x 10 10 N/m2

,

kl l = kL = 1.51 x 10- 8 CjVm, els = 10.0 Cjm2 and ers = O. It can be observed that I1H
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increases with the increase of the aspect ratio bla when the inhomogeneity is softer than
the matrix, but decreases with the increase of bla when the inhomogeneity is harder. This
figure also shows two limiting cases: the first is concerned with a void (Gi..!G) = 0) and the
second with a rigid inhomogeneity (G;jG L= ex.:).

Finally, Figs 7 and 8 show the strong dependence of the electroelastic field upon the
far-field loading. Figure 7 shows contours of constant shear stress ratio (L,!(J°, due to a
remote applied load of (J~\ = 0, (J~F = 5 X 10 7 N!m2

, E~ = 0 and E: J = 106 Vim. Figure 8
h t 1' : II.. th' h 0 - 5 107 N i 2 0 - 0 EO - 106 VIsows can ours a (Jeri (JeF lor e case were (Jc, - X 1m, (JCF - ,y - ,m

and E;) = 0 for the same material system. From these figures one can observe the difference
between contours of the shear stress as a result of the externally applied mechanical and
electric loads. Although severe concentrations are observed near the interface, along the
minor radius of the inhomogeneity in both cases, the contour shape in these two figures is
quite different. For example, (JCF is symmetric about the x- and y-axes as depicted in Fig. 7,
while anti-symmetric about the origin as shown in Fig. 8.

5. CONCLUDING REMARKS

A general solution is provided for the elliptical inhomogeneity problem in piezoelectric
materials under antiplane shear and inplane electric field. The explicit forms of the elec­
troelastic fields in both the inhomogeneity and the matrix are obtained using the complex
variable method. A convenient form of the change of the electric enthalpy due to the
presence of an inhomogeneity was also obtained. The electroelastic field concentrations
and the change of electric enthalpy were evaluated for different test cases and were found
to be strongly dependent upon the material mismatch, the aspect ratio of the inhomogeneity
and the remote loading condition. Specifically, the results show that an elastic inhomo­
geneity can be treated as a rigid body when the shear moduli ratio Gi..!G) ? 5 and a
dielectric inhomogeneity can be treated as a conductor when the dielectric moduli ratio
kfJ/k: I ? 5. They also reveal that the electric enthalpy increases with increasing aspect
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ratio of a relatively softer inhomogeneity (Cue ~ < 1) and decreases with a harder inhomo­
geneity (CUC~ > 1),
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APPENDIX

1~1) = i' l +)" (A 1.1)

J~11 = i'l +,1, (AI.2)

Lii) = A, +;'4 (AI.3)

N~11 = ,1,+,14 (AlA)

1~31 = i. s +)'7 (AU)

J~)J) = As +A7 (AI.6)

L~3) = ,10 + i., (AI.7)

N~3) = ,10 +,(, (Al.8)

12)_~() . },1+,(') (A 1.9)10 - '1-1\,+
/11 R'

I ( A -A,)J(2) - _ ' +' + _1--' I (A1.IO)o - I.) Ai -

/11 R'

(2) _ ~C i' 2+ ,(4 ) (AI.II)L o - 1\7 -},4 +
/11 - R'

I ( A -A )N(2)_- 7 +' +~ (AU 2)() - A.l 1'4
/11 R'

1(4)_~C _. +As+i.,) (AI.13)() - As Iq
/12 R 2

(4) Ie. As-i.,) (A 1.14)J n =- 1\5+1\7+---
/12 R'

L(4) _ ~ (; _, + Ao+ i.,) (AU 5)o - -6 1'8
/1, R'

(4)_ I ( ,(o-i.,) (A 1.1 6)No - - )'0 + I., + --- - I
/1, R2

with

(AI. IT)

(AI.18)
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. I {[( 1) ( I) IJ e:, [, , I ,1 J}I., =;5 1+- + 1-- ----; +--, (e,,+c,s)-(e,s-e,,)--;
2 il2 ill R- G~kl' R-

1 {e: 5 [( 1) ( 1) 1J 1 [, , I • 1 J}le4 = -:- ----'- 1+ --- + 1- - ----; - - (e" + e; J - (e" - e;,)----;
(j, k:, il2 il, R- k), W

1 {e: 5 [( 1) ( 1) 1J 1[, ,. 1 JIi., = --< -:- 1+- - 1-- ----; -----; (e:,+e;,)+(e:,-I';,)----; (u, G~ ill il, R- G; R- )

1 r[( 1) ( 1) 1J 1': < [, ,1 JIA"='l 1+- - 1-- ----; +-,- (e:,+ei,)+(e:,-e;5)-~ I
(J, l ill il, R- G;k:, W J

- 1{e:, [( 1) ( 1) 1J 1[, ' I ' 1JiIe, = -..,.- - 1+- + 1-- ----; -- (e,,+e;,)-(e ,,-I';,)----; \>

0, G; ill P, R- G; R- •

. 1 {[( 1) ( 1) 1J 1': 5 [, ' , . 1 JII-x =, 1+- + 1-- ----; +-.,- (e,,+I';,)-(e,,-I';,)----; \'u, il, P, R- G;k:, R' .

6, = [(1+ ~)- (1- ~)~J [(1 + ~)- (1- ~)~JT~ [(1':5+1')5)-(1':'
P, P, R" P, P, R- G;k;,

(A 1.19)

(AI.20)

(A 1.2 I)

(AI.22)

(A 1.23)

(A 1.24)

(AI.2S)

. [( 1) ( 1) 1J[( 1) ( 1)\ 1J I [, , I • 1 J'0, = 1+- + 1-- ----; 1+- + 1-- -~ +----;-;- (e,,+e,<)-(I',,-I',,)----; .
il, P, R' P, P, R' G;k;, R'

(A 1.26)


